Large Graph Construction for Scalable Semi-Supervised Learning

نویسندگان

  • Wei Liu
  • Junfeng He
  • Shih-Fu Chang
چکیده

In this paper, we address the scalability issue plaguing graph-based semi-supervised learning via a small number of anchor points which adequately cover the entire point cloud. Critically, these anchor points enable nonparametric regression that predicts the label for each data point as a locally weighted average of the labels on anchor points. Because conventional graph construction is inefficient in large scale, we propose to construct a tractable large graph by coupling anchorbased label prediction and adjacency matrix design. Contrary to the Nyström approximation of adjacency matrices which results in indefinite graph Laplacians and in turn leads to potential non-convex optimization over graphs, the proposed graph construction approach based on a unique idea called AnchorGraph provides nonnegative adjacency matrices to guarantee positive semidefinite graph Laplacians. Our approach scales linearly with the data size and in practice usually produces a large sparse graph. Experiments on large datasets demonstrate the significant accuracy improvement and scalability of the proposed approach.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Scalable Graph-Based Learning Applied to Human Language Technology

Scalable Graph-Based Learning Applied to Human Language Technology Andrei Alexandrescu Chair of the Supervisory Committee: Associate Research Professor Katrin Kirchhoff Electrical Engineering Graph-based semi-supervised learning techniques have recently attracted increasing attention as a means to utilize unlabeled data in machine learning by placing data points in a similarity graph. However, ...

متن کامل

Large-Scale Graph-based Semi-Supervised Learning via Tree Laplacian Solver

Graph-based Semi-Supervised learning is one of the most popular and successful semi-supervised learning methods. Typically, it predicts the labels of unlabeled data by minimizing a quadratic objective induced by the graph, which is unfortunately a procedure of polynomial complexity in the sample size n. In this paper, we address this scalability issue by proposing a method that approximately so...

متن کامل

Efficient Distributed Semi-Supervised Learning using Stochastic Regularization over Affinity Graphs

We describe a computationally efficient, stochastic graph-regularization technique that can be utilized for the semi-supervised training of deep neural networks in a parallel or distributed setting. We utilize a technique, first described in [13] for the construction of mini-batches for stochastic gradient descent (SGD) based on synthesized partitions of an affinity graph that are consistent wi...

متن کامل

Efficient Graph-Based Semi-Supervised Learning of Structured Tagging Models

We describe a new scalable algorithm for semi-supervised training of conditional random fields (CRF) and its application to partof-speech (POS) tagging. The algorithm uses a similarity graph to encourage similar ngrams to have similar POS tags. We demonstrate the efficacy of our approach on a domain adaptation task, where we assume that we have access to large amounts of unlabeled data from the...

متن کامل

Supervised neighborhood graph construction for semi-supervised classification

Graph based methods are among the most active and applicable approaches studied in semi-supervised learning. The problem of neighborhood graph construction for these methods is addressed in this paper. Neighborhood graph construction plays a key role in the quality of the classification in graph based methods. Several unsupervised graph construction methods have been proposed that have addresse...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010